
Employee Registration Form Documentation

Overview
The Employee Registration Form is a React-based application using Material UI and Firebase
Firestore for managing employee data. This document provides an overview of the
implementation, including the UI components, Firebase integration, and form handling.

Features
● User-friendly registration form for employees
● Data validation and structured input fields
● Firestore database integration for storing employee details
● Success message display after form submission

Technologies Used
● React: Frontend framework
● Material UI: UI components
● Firebase Firestore: Database for storing employee records
● Date Fns: Date management library

Installation & Setup
Clone the repository:
git clone https://github.com/your-repo.git

1. cd your-repo
2. Install dependencies:

npm install
3. Configure Firebase:

○ Create a Firebase project
○ Set up Firestore database
○ Initialize Firebase in the project (firebase.js)
○ Enter your Firebase credentials in firebase.js

Firebase Configuration (firebase.js)

Create a firebase.js file and enter your Firebase credentials:

import { initializeApp } from 'firebase/app';

import { getFirestore } from 'firebase/firestore';

const firebaseConfig = {
 apiKey: "YOUR_API_KEY",
 authDomain: "YOUR_AUTH_DOMAIN",
 projectId: "YOUR_PROJECT_ID",
 storageBucket: "YOUR_STORAGE_BUCKET",
 messagingSenderId: "YOUR_MESSAGING_SENDER_ID",
 appId: "YOUR_APP_ID"
};

const app = initializeApp(firebaseConfig);
const db = getFirestore(app);

export { db };

Code Explanation

Component Imports

The form utilizes Material UI components (TextField, Button, Grid, etc.) and Firebase
Firestore methods.

import React, { useState } from 'react';
import { Container, Box, Typography, TextField, MenuItem, Button, Grid, Alert } from
'@mui/material';
import { DatePicker, LocalizationProvider } from '@mui/x-date-pickers';
import { AdapterDateFns } from '@mui/x-date-pickers/AdapterDateFns';
import { db, collection, addDoc } from './firebase';

State Management

The useState hook manages form input fields and handles changes dynamically.

const [formData, setFormData] = useState({
 firstName: '',
 lastName: '',
 email: '',
 phone: '',
 department: '',
 position: '',
 hireDate: null,
});

Handling Input Changes

Updates form values in response to user input.

const handleChange = (e) => {
 setFormData({ ...formData, [e.target.name]: e.target.value });
};

Handling Date Selection

Uses DatePicker for selecting the hire date.

const handleDateChange = (date) => {
 setFormData({ ...formData, hireDate: date });
};

Form Submission

Upon submission, the form data is sent to Firestore.

const handleSubmit = async (e) => {
 e.preventDefault();
 setSubmitted(true);
 try {
 await addDoc(collection(db, "employees"), formData);
 setFormData({ firstName: '', lastName: '', email: '', phone: '', department: '', position: '',
hireDate: null });
 } catch (error) {
 console.error("Error adding employee: ", error);
 }
};

UI Layout
The form consists of input fields structured in a grid layout.

● Name, Email, Phone Number
● Department Selection (MenuItem dropdown)
● Position Input
● Hire Date Picker
● Submit Button

Screenshots

Conclusion
This Employee Registration Form offers a simple and effective way to collect and store
employee details in Firestore. The use of Material UI ensures a clean and responsive design,
while Firebase provides a scalable backend solution.

For further enhancements, consider adding:

● Form validation for email and phone fields
● Improved error handling for Firestore operations
● Integration with authentication for secure access

	Overview
	Features
	Technologies Used
	Installation & Setup
	Firebase Configuration (firebase.js)
	Code Explanation
	Component Imports
	State Management
	Handling Input Changes
	Handling Date Selection
	Form Submission

	UI Layout
	Screenshots
	
	Conclusion

