Employee Registration Form Documentation

Overview

The Employee Registration Form is a React-based application using Material Ul and Firebase
Firestore for managing employee data. This document provides an overview of the
implementation, including the Ul components, Firebase integration, and form handling.

Features

User-friendly registration form for employees

Data validation and structured input fields

Firestore database integration for storing employee details
Success message display after form submission

Technologies Used

React: Frontend framework

Material Ul: Ul components

Firebase Firestore: Database for storing employee records
Date Fns: Date management library

Installation & Setup

Clone the repository:
git clone https://github.com/your-repo.git

1. cd your-repo
2. Install dependencies:
npm install
3. Configure Firebase:
o Create a Firebase project
Set up Firestore database

O
o Initialize Firebase in the project (firebase.js)
o Enter your Firebase credentials in firebase. js

Firebase Configuration (firebase. js)

Create a firebase. js file and enter your Firebase credentials:

import { initializeApp } from 'firebase/app’;



import { getFirestore } from 'firebase/firestore’;

const firebaseConfig = {
apiKey: "YOUR_API_KEY",
authDomain: "YOUR_AUTH_DOMAIN",
projectld: "YOUR_PROJECT_ID",
storageBucket: "YOUR_STORAGE_BUCKET",
messagingSenderld: "YOUR_MESSAGING_SENDER_ID",
appld: "YOUR_APP_ID"

|

const app = initializeApp(firebaseConfig);
const db = getFirestore(app);

export { db };

Code Explanation

Component Imports

The form utilizes Material Ul components (TextField, Button, Grid, etc.) and Firebase
Firestore methods.

import React, { useState } from 'react’;

import { Container, Box, Typography, TextField, Menultem, Button, Grid, Alert } from
'‘@mui/material’;

import { DatePicker, LocalizationProvider } from '@mui/x-date-pickers';

import { AdapterDateFns } from '@mui/x-date-pickers/AdapterDateFns';

import { db, collection, addDoc } from './firebase',

State Management

The useState hook manages form input fields and handles changes dynamically.

const [formData, setFormData] = useState({
firstName: ",
lastName: ",
email: ",
phone: ",
department: ",
position: ",
hireDate: null,

h;



Handling Input Changes
Updates form values in response to user input.

const handleChange = (e) => {
setFormData({ ...formData, [e.target.name]: e.target.value });

2
Handling Date Selection
Uses DatePicker for selecting the hire date.

const handleDateChange = (date) => {
setFormData({ ...formData, hireDate: date });

>
Form Submission

Upon submission, the form data is sent to Firestore.

const handleSubmit = async (e) => {
e.preventDefault();
setSubmitted(true);
try {
await addDoc(collection(db, "employees"), formData);
setFormData({ firstName: ", lastName: ", email: ", phone: ", department: ", position: ",
hireDate: null });
} catch (error) {
console.error("Error adding employee: ", error);
}
2

Ul Layout

The form consists of input fields structured in a grid layout.

Name, Email, Phone Number

Department Selection (MenuItem dropdown)
Position Input

Hire Date Picker

Submit Button



Screenshots

Please fill in this field.

Employee Registration Form

First Name * Last Name *
Email Address * Phone Number *
Department* v Position*

Hire Date (]

REGISTER EMPLOYEE



Employee Registration Form

First Name * Last Name *
Rohit Kumar
Email Address * Phone Number*
example @gmail.com 9876543210
Department*

‘> - Position™*

‘ Human Resources

Information Technology

Sales
‘ EMPLOYEE
Finance

— Marketing
Employee Registration Form

First Name * Last Name *
Rohit Kumar
Email Address * Phone Number *
example @gmail.com 9876543210
Department * Position *
Information Technology v Software developer
Hire Date
02/14/2025 =2

REGISTER EMPLOYEE



Employee Registration Form

@ Employee registered successfully!

First Name * Last Name *
Email Address * Phone Number*
Department™ - Position*

Hire Date m

REGISTER EMPLOYEE

Conclusion

This Employee Registration Form offers a simple and effective way to collect and store
employee details in Firestore. The use of Material Ul ensures a clean and responsive design,
while Firebase provides a scalable backend solution.

For further enhancements, consider adding:

e Form validation for email and phone fields
e Improved error handling for Firestore operations
e Integration with authentication for secure access



	Overview 
	Features 
	Technologies Used 
	Installation & Setup 
	Firebase Configuration (firebase.js) 
	Code Explanation 
	Component Imports 
	State Management 
	Handling Input Changes 
	Handling Date Selection 
	Form Submission 

	UI Layout 
	Screenshots​​ 
	​​ 
	Conclusion 

